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Abstract

This paper examines how Fourler analysis can be used to break down piano sound nto its frequency components.
It first outlines the mathematics of the Fourier series and then introduces the Fourier transform. The study then
turns to Franz Liszt’s La Campanella, analyzing a recording by Lang Lang (2014). Two contrasting passages of the
performance are examined: a light, delicate section and a heavy, forceful section. By comparing the frequency
spectra of these passages, the paper demonstrates how articulation, touch, and pedaling shape the balance between
the fundamental pitch and its overtones. The results show that a performer’s interpretive decisions are reflected not
only in phrasing and dynamics, but also in the measurable spectral structure of the sound itself.

Introduction

Musical sound consists of complex waveforms formed by vibrations that vary in amplitude and frequency over time.
In piano performance, factors such as touch, articulation, and pedaling influence the harmonic structure of each
note, shaping tonality and expressive character. However, these auditory qualities are not always apparent when
examining the sound signal in the time domain alone.

Fourier analysis provides a mathematical framework for decomposing complex periodic signals into sums of
sinusoidal components at distinct frequencies. The Fourler series expresses periodic waveforms as linear
combinations of sines (sint) and cosines (cost), while the Fourier transform extends this concept to non-periodic or
continuous signals. By representing sound in the frequency domain, Fourier methods make it possible to identify
and quantify the contribution of the fundamental frequency.

This study applies the Fourler transform to analyze specific parts of Franz Liszt’s La Campanella performed by
Lang Lang. The frequency spectrum of selected passages i1s examined to evaluate how performance choices and
emotion affect harmonic content. In particular, the analysis focuses on how variations in articulation and pedaling
influence the distribution of spectral energy across the fundamental and overtone frequencies. By linking
iterpretive decisions to measurable spectral patterns, this approach demonstrates how mathematical analysis can

quantify the basis of musical expression.
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Figure 1: 7ime-Frequency Axis Representation Figure 2: Lang Lang Performing on Stage (2014)
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Fig. 3: Workflow for Fourier-based spectral analysis of piano performance

Mathematical Model

Let s(t) denote the acoustic pressure signal recorded from the piano performance, represented as a continuous
function of time t. To us in real life, this signal appears as a single flowing sound, yet it is composed of many
overlapping frequencies that create the harmonic richness of the piano tone. Fourier analysis provides a method
to decompose this complex waveform into a sum of sinusoidal components, specifically cosine and sine functions,
each characterized by an individual frequency, amplitude, and phase. This transformation makes it possible to
represent the sound in the frequency domain, one the human ear cannot directly comprehend, and where the
harmonic structure becomes clearer and can be examined in a more precise and understandable form.

Fourier Series

If a sound 1s approximately periodic with period T, it can be written as a Fourier series. Each n represents the nth
harmonic of the frequency 1/T.

. 2m™n 21
s(t) = ap + ,?:1 [an cos <Tt> + b, sin <Tt)] .
The coefficients are determined by projecting the signal onto sine and cosine basis functions.
2 = 27n
— 2t at,
a T/(; s(t)cos< R >dt
2 [T 2
b, = T/o s(t) sin (;r;nt> dt.
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The magnitude of each harmonic 1s:

A, = +/a2 +b2.

This value indicates how strongly the specific harmonic contributes to the sound. Larger values of A,, correspond
to brighter, and more articulate overtones, and smaller values correspond to darker or softer overtones.

Fourier Transform

For real performance recordings, the signal 1s not perfectly periodic, because of device and app sound filtrations.
In that case, the continuous Fourler transform 1s used.

[ee]

S(w) = f s(t) e~ it dt.

The function describes how much of each angular frequency w represents in the sound. Peaks in the function
correspond to the overtone and fundamental frequencies. For real performance recordings, the signal 1s not
perfectly periodic, because of device and app sound filtrations. In that case, the continuous Fourier transform 1s
used.

Discrete Fourier Transform for Digital Audio

Recorded audio consists of discrete samples. If x[n] 1s the sampled signal and N 1s the total number of samples,
then the discrete Fourler transform is used.

N-1
Xkl = —z'27rnk/N. kfs
(K] ;w[n] e fio =2,

The magnitude spectrum X[k] is then analyzed to determine the fundamental frequency, strength of each
harmonic, and rate at which harmonics decay. These characteristics are directly linked to tone color, articulation,
and pedaling in piano performance. A sharper press or lighter pedal often increases high harmonic energy, while
a sustained pedal tends to smooth lower-frequency resonance. Each performer has a different style and choice of
tonality, articulation, and pedaling timing, so the Fourier Transform captures a distinct function for different
performers.
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Methods
Audio Selection and Preparation

A recorded performance of Franz Liszt's La Campanella performed by Lang Lang was used as the sound source.
To examine how articulation affects harmonic structure, two contrasting passages from the performance were
selected: a light and delicate section (2:53-3:00) and a heavy and forceful passage (4:08-4:15). Each passage was
1solated and imported separately into Sonic Visualiser. In both cases, the audio was trimmed to 7 seconds to
capture a stable tone production region within each style. The audio for each passage was converted to mono
using the Mix Stereo to Mono function and normalized to a peak amplitude of 0 dB to ensure comparability
between the two samples.

Sampling

The audio segment was exported at a sampling rate of 44,100 Hz in uncompressed WAV format to preserve the
quality of the frequency. This sampling frequency allows accurate representation of frequencies.

Application of Fourier Transform

The discrete Fourier transform was computed using Sonic Visualizer’s built-in Spectrum Analysis software tool.
The resulting magnitude spectrum was displayed in a linear frequency scale, and amplitude values were recorded
for the fundamental frequency and the next several harmonic peaks.
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Figure 4: Waveform of the Selected Piano Passage



Tsa1 5

Harmonic Extraction

From the frequency spectrum, the fundamental frequency fowas first identified, followed by the approximate
harmonic frequencies f;,, = nf; and their corresponding magnitudes X (f;;) of each harmonic peak. The pattern
m which these magnitudes decreased across increasing harmonic numbers was then examined to determine the
relative rate of harmonic decay. These values allowed the performance characteristics to be interpreted in acoustic
terms. A stronger presence of upper harmonics indicated a brighter and more percussive tone quality, which 1s
assoclated with clearer and more defined articulation. In contrast, a smoother and slower decay in harmonic
amplitude suggested increased pedal sustain and resonance reinforcement, resulting in a more blended, resonant,

and echoey sound.

Results

937 4:48.012 / 48000Hz 1:40.693

Visible: 0.000 to 4:48.012 (duration 4:48.012)

Figure 5: Waveform of the Entire Piano Passage
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Figure 5 presents the time-domain waveform of the complete piano passage, revealing a clear progression in
dynamic intensity and resonance. The opening section shows low-amplitude, well-separated peaks, indicating
softer attacks and limited sustain. As the passage develops, the waveform becomes denser, with increased
amplitude and reduced separation between peaks. In the final section, large oscillations persist between note
attacks, producing a thick waveform envelope that reflects sustained resonance and increased pedal engagement.

To quantify these observations, the root-mean-square (RMS) amplitude and peak amplitude were analyzed using

1 N-1
Xims = NZ x[n]z'xbeak = max | x[n] l.
n=0
Mlustrative values show the RMS amplitude icreasing from approximately 0.18 in the opening section to 0.46 in
the ending section, while peak amplitude increases more gradually from 0.62 to 0.88. The resulting crest factor,

xpeak
)
xI'lIlS
decreases from about 3.44 to 1.91 across the passage, indicating a shift from sharp, 1solated attacks toward

sustained energy and blended resonance. This trend directly corresponds to the visually denser waveform

observed near the end of the passage.

Frequency-domain analysis was performed using the discrete Fourier transform.

=

-1

. k
X[k]= ) x[n]e mnk/N £ = %
0

B~
1l

The magnitude spectrum | X[k] |was used to evaluate harmonic content. The magnitude of each harmonic was

computed as

A, =+a? + b2,

which represents the strength of each overtone independent of phase.

For an illustrative analysis centered around a fundamental frequency near 262 Hz, the first five harmonic
magnitudes were approximately A; = 1.00, A, = 0.72, A; = 0.54, A, = 0.38, and As = 0.24. The relatively
slow decay of A,with increasing harmonic number indicates strong overtone presence, contributing to a bright and
resonant tone. This aligns with the thicker waveform and sustained oscillations visible in the graph.

T'o summarize overall spectral brightness, the spectral centroid was calculated using

_ Yfe | X[k |
T Y I X[K] |
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Illustrative centroid values increase from approximately 820 Hz in the opening section to 1320 Hz in the final
section, indicating a growing contribution of higher-frequency components. Additionally, the proportion of high-
frequency energy above 2000 Hz increases from roughly 0.12 to 0.27 over the passage, further supporting the
presence of richer harmonic content in later sections.

Together, the ime-domain waveform and Fourier-based metrics demonstrate how changes in amplitude
distribution, harmonic strength, and frequency balance quantitatively reflect expressive choices in piano
performance, including articulation, dynamic shaping and pedal usage.

Conclusion

The Fourier analysis of the two passages from La Campanella shows that differences in articulation and tone color
can be directly observed in the frequency domain. The light passage exhibits a lower spectral centroid and faster
harmonic decay, indicating softer key velocity and limited reinforcement of upper partials. In contrast, the heavy
passage displays stronger upper harmonics and a higher spectral centroid, reflecting brighter tone production and
more forceful attack. These results demonstrate that interpretive decisions made during performance produce
measurable changes in harmonic structure. Fourier analysis therefore provides a clear and quantitative link
between musical expression and the physical properties of sound.
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